An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
نویسندگان
چکیده
منابع مشابه
An Ensemble Pruning Primer
Ensemble pruning deals with the reduction of an ensemble of predictive models in order to improve its efficiency and predictive performance. The last 12 years a large number of ensemble pruning methods have been proposed. This work proposes a taxonomy for their organization and reviews important representative methods of each category. It abstracts their key components and discusses their main ...
متن کاملDiversity Regularized Ensemble Pruning
Diversity among individual classifiers is recognized to play a key role in ensemble, however, few theoretical properties are known for classification. In this paper, by focusing on the popular ensemble pruning setting (i.e., combining classifier by voting and measuring diversity in pairwise manner), we present a theoretical study on the effect of diversity on the generalization performance of v...
متن کاملPareto Ensemble Pruning
Ensemble learning is among the state-of-the-art learning techniques, which trains and combines many base learners. Ensemble pruning removes some of the base learners of an ensemble, and has been shown to be able to further improve the generalization performance. However, the two goals of ensemble pruning, i.e., maximizing the generalization performance and minimizing the number of base learners...
متن کاملEnsemble Pruning Using Reinforcement Learning
Multiple Classifier systems have been developed in order to improve classification accuracy using methodologies for effective classifier combination. Classical approaches use heuristics, statistical tests, or a meta-learning level in order to find out the optimal combination function. We study this problem from a Reinforcement Learning perspective. In our modeling, an agent tries to learn the b...
متن کاملData Dependant Learners Ensemble Pruning
Ensemble learning aims at combining several slightly different learners to construct stronger learner. Ensemble of a well selected subset of learners would outperform than ensemble of all. However, the well studied accuracy / diversity ensemble pruning framework would lead to over fit of training data, which results a target learner of relatively low generalization ability. We propose to ensemb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2010
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-010-5172-0